如何优化统筹如此众多的回路数,是汽车线束设计所面临的难题。
首先需要基于零部件原理确定其回路的连接方式,进而确定在整车环境下各零部件布置的初步位置,而线束布置路径的选择则是基于零部件布置位置的基础上,用最短的线束 长度覆盖尽量多的零部件布置区域,这也是整车电器拓扑的雏形。
在完成整车拓扑搭建后,就需要对其进行设计校核,通过核算具体的导线用量来判断零部件的布置位置和线束布置路径是否合理(目前市面上已有大量软件可实现该功能),具体方法为通过对零部件逐一调整的方式来进行对比,如图 2和图3中对比BCM不同布置位置的设计,来校核整车导线使 用长度用量,进而确定BCM布置在哪个位置更优。
在这个过程中往往会出现相互影响的情况:零部件A布置调整会影响到零部件B位置的选择。所以在逐一确定完各零部件及线束路径对导线使用长度的影响后,将对导线长度影响较大的作为首轮优选方案,在此基础上重新搭建拓扑,再次对其它次要方案进行对比分析,从而实现导线长度最省的拓扑设计平台。
完善的拓扑可以确保导线用量最省,同时针对导线使用而言,传统的设计理念中对导线的选用有明确的要求,为了避免端子插接的混淆,往往会采用较多的线色来进行区分,但随着制造水平及检验方式的不断完善,其实导线的线色可以进行适当的设计调整,以最少的导线种类来实现回路功能,也是从设计角度减少回路设计成本的方法。
针对接插件而言,如何最少的使用接插件和减少转接回路是回路设计中需要重点关注的内容。在这里线束设计工程师需要转变成系统设计工程师,需要将减少接插件使用和转接回路的设计工作前移到电器零部件的设计与规划中,主要有两个方面需要考虑。
一方面是可以根据车型配置进行电器零部件功能回路区分,比如安全气囊控制器,可以将基本的功能回路设计在同一接插件内,而高配或扩展功能布置在另一接插件中,这样就可以在低配车型上仅用一个接插件,也可实现电器回路功能。
另一方面也可根据回路的连接区域进行规划,比如同样是安全气囊控制器,有的设计人员会考虑将底盘的功能设计在同一接插件中,将接仪表台板的功能设计在另一接插件中,这样的规划就可以减少各区域回路的相互转接。这种基于区域的功能回路设计对于连接引脚较多的电器部件(例如 BCM控制器)效果尤为显著。
线束回路是实现电路连接的核心,其电路连接的安全与可靠性是必须要满足的要求,回路设计中的导线和接插件都必须遵循负载、环境的要求,这些内容在其它的设计资料上 已有详细的描述,本文仅从回路的路径选择上说明如何确保回路性能的设计。
首先回路的设计必须要对无法探测的失效模式进行规避,如图4所示的熔断丝后部与继电器线圈端和触点端并接的回路,这样的设计在整车电路设计中很普遍,当继电器线圈端和触点端端子不同时,这样的设计显然是合理的,但当继电器线圈端和触点端端子相同时,这样的设计在端子插入继电器孔位插错的情况下,目前的电检设备还无法识别这样的失效方式。
所以这种回路设计方式在某些情况下是不能采用的。当然不同的设计工程师面临的设计环境和制造环境有差异,具体的失效模式也会有所不同,但回路设计中失效模式的规避是首先要考虑的。
另一个方面,目前汽车电子化水平显著提高,作为一个电子载体,汽车上面临的电磁环境也更复杂,而线束回路设计如何减少电磁干扰是一个不可避免的课题。导线耦合干扰 (图5)、电源干扰、搭铁干扰、辐射干扰等都会对电器件正常工作产生不利影响,而线束中各回路捆扎在一起,线束回路之间,线束与金属导体之间产生的导线耦合干扰在线束上表现得尤为突出。
在回路设计中要减少导线耦合干扰,首先要区分干扰回路和敏感回路。简单点说,感性类负载回路比如点火线圈、喇叭、电机等属于干扰回路,而影像、雷达探头、低功率的 LED灯、各类传感器等回路属于敏感回路,在设计过程中干 扰回路和敏感回路需要分开布置。试验表明,增加导线间距可降低高频干扰(图6),在无法进行区分的情况下,需通过导线注入干扰的方式进行功能测试,以判断回路设计的正确。
同时为降低线束辐射及耦合的影响,应尽可能降低电路回路面积和线束长度。在汽车整车设计中,需要尽量缩小线束的回路面积,特别是电源线与搭铁线,要求回路中线束尽 量并行走线,同时尽量紧贴金属车身固定,减少回路面积,分开走线距离不超过50cm。